Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Nat Commun ; 15(1): 2807, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561373

RESUMO

With the rapid development of the Internet of Things, numerous devices have been deployed in complex environments for environmental monitoring and information transmission, which brings new power supply challenges. Wireless power transfer is a promising solution since it enables power delivery without cables, providing well-behaved flexibility for power supplies. Here we propose a compact wireless power transfer framework. The core components of the proposed framework include a plane-wave feeder and a transmissive 2-bit reconfigurable metasurface-based beam generator, which constitute a reconfigurable power router. The combined profile of the feeder and the beam generator is 0.8 wavelengths. In collaboration with a deep-learning-driven environment sensor, the router enables object detection and localization, and intelligent wireless power transfer to power-consuming targets, especially in dynamic multitarget environments. Experiments also show that the router is capable of simultaneous wireless power and information transfer. Due to the merits of low cost and compact size, the proposed framework may boost the commercialization of metasurface-based wireless power transfer routers.

2.
Molecules ; 29(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338377

RESUMO

A novel water-soluble Amygdalus persica L. flowers polysaccharide (APL) was successfully isolated and purified from Amygdalus persica L. flowers by hot water extraction. Its chemical components and structure were analyzed by IR, GC-MS, and HPLC. APL consisted of rhamnose, arabinose, mannose and glucose in a molar ratio of 0.17:0.034:1.0:0.17 with an average molecular weight of approximately 208.53 kDa and 15.19 kDa. The antioxidant activity of APL was evaluated through radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 3-ethylbenzthiazoline-6-sulfonic acid (ABTS), Hydroxyl radical scavenging, Superoxide radical scavenging, and the reducing power activity was also determined in vitro. Besides, in vivo antioxidant experiment, zebrafish (Danio rerio) embryos were treated with different concentrations of APL and then exposed to LPS to induce oxidative stress. Treatment with APL at 50 or 100 µg/mL significantly reduced LPS-induced oxidative stress in the zebrafish, demonstrating the strong antioxidant activity of APL. Moreover, the effect of APL on zebrafish depigmentation was tested by analyzing the tyrosinase activity and melanin content of zebrafish embryos. APL showed a potential reduction in the total melanin content and tyrosinase activity after treatment. This work provided important information for developing a potential natural antioxidant in the field of cosmetics and food.


Assuntos
Antioxidantes , Peixe-Zebra , Animais , Antioxidantes/química , Monofenol Mono-Oxigenase , Lipopolissacarídeos , Melaninas/análise , Flores/química , Água/análise
3.
Lab Invest ; 104(4): 100328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237737

RESUMO

The risk of developing cervical squamous lesions in women with multiple high-risk human papillomavirus (hrHPV) infections is uncertain. The aim of this retrospective study was to investigate the type-specific attribution and phylogenetic effects of single and multiple hrHPV subtypes in cervical squamous lesions. All cases with cervical histopathologic diagnosis and human papillomavirus (HPV) genotyping results in the 6 months preceding biopsy from October 2018 to December 2022 were studied and analyzed. Over the study period, 70,361 cases with histopathologic follow-up and prior HPV genotyping were identified. The hrHPV-positive rate was 55.6% (39,104/70,361), including single hrHPV detected in 27,182 (38.6%), 2 types of hrHPV detected in 8158 (11.6%), and 3 types of hrHPV detected in 2486 (3.5%). Among 16,457 cases with a histologically diagnosed squamous lesion (cervical intraepithelial neoplasia 1: 11411; cervical intraepithelial neoplasia 2/3: 4192; squamous cell carcinoma: 854 cases), the prevalence of single hrHPV infection increased, but the rate of multiple concomitant hrHPV infections showed negative association as the degree of squamous lesions increased. Among women with a single HPV16 infection, cervical intraepithelial neoplasia 2/3 and squamous cell carcinoma (CIN2+) diagnostic rate was 30.6%, and it increased to 47.6% when coinfected with HPV33 (P < .001) but significantly decreased when coinfected with all other hrHPV types (P < .05). By comparing CIN2+ diagnostic rates in 40 most common 2 types of hrHPV infections with related single hrHPV infection, CIN2+ rates were decreased in 12 combinations (30.0%), equivalent in 26 combinations (65.0%), and increased in 2 combinations (5.0%). The cases with 3 types of HPV infections reduced the risk for CIN2+ compared with related single HPV infections. HPV16+52+53, HPV16+52+68, HPV16+52+51, HPV16+39+52, and HPV16+58+53 significantly decreased the risk of CIN2+ compared with HPV16 single infection (P < .05). This study demonstrates that multiple hrHPV infections are not associated with cumulatively higher risk for CIN2+ development, suggesting that oncogenic progression of multiple hrHPV-associated cervical squamous lesions is neither synergistic nor a cumulative effect at the phylogenetic level, possibly a way of competitive interference.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Papillomavirus Humano , Prevalência , Estudos Retrospectivos , Filogenia , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/epidemiologia , Displasia do Colo do Útero/patologia , Carcinoma de Células Escamosas/epidemiologia , Genótipo
4.
Reproduction ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215278

RESUMO

In brief: The impact of HVJ-E employed in mitochondrial replacement techniques (MRTs) on embryonic development remains uncertain. This study has exhibited the influence of HVJ-E utilized in MRTs on embryonic development and has devised a novel HVJ-E-induced fusion approach to curtail the amount of HVJ-E employed in MRTs. Abstract: Mitochondrial replacement techniques (MRTs) provide a viable option for women carrying pathogenic mitochondrial DNA (mtDNA) variants to conceive disease-free offspring with a genetic connection. In comparison to electrofusion, HVJ-E-induced fusion has been identified as the most promising approach for clinical translation of MRTs due to its absence of electrical interference. However, despite confirmation of the absence of RNA activity in HVJ-E, a reduction in blastocyst quality has been observed in various MRTs studies utilizing the HVJ-E-induced fusion scheme. Recent investigations have revealed a dose-dependent elevation of reactive oxygen species (ROS) levels in various cancer cells incubated with HVJ-E. However, the impact of HVJ-E as a sole determinant on embryonic development in MRTs remains unverified. This investigation establishes that the augmented concentration of HVJ-E utilized in the conventional HVJ-E fusion protocol is an autonomous variable that influences embryonic development in MRTs. This effect may be attributed to amplified DNA damage resulting from heightened levels of ROS in reconstructed embryos. To mitigate the presence of HVJ-E in reconstructed zygotes while maintaining optimal fusion efficiency in MRTs, a novel HVJ-E-induced fusion approach was devised, namely, press-assisted fusion. This technique offers potential advantages in reducing detrimental factors that impede embryo development in MRTs.

5.
Eur J Pharmacol ; 963: 176219, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38040079

RESUMO

Sepsis-associated lung injury often coexists with intestinal dysfunction. Butyrate, an essential gut microbiota metabolite, participates in gut-lung crosstalk and has immunoregulatory effects. This study aims to investigate the effect and mechanism of sodium butyrate (NaB) on lung injury. Sepsis-associated lung injury was established in mice by cecal ligation and puncture (CLP). Mice in treatment groups received NaB gavage after surgery. The survival rate, the oxygenation index and the lung wet-to-dry weight (W/D) ratio were calculated respectively. Pulmonary and intestinal histologic changes were observed. The total protein concentration in bronchoalveolar lavage fluid (BALF) was measured, and inflammatory factors in serum and BALF were examined. Diamine oxidase (DAO), lipopolysaccharide (LPS), and surfactant-associated protein D (SP-D) levels in serum and amphiregulin in lung tissue were assessed. Intercellular junction protein expression in the lung and intestinal tissues were examined. Changes in immune cells were analyzed. NaB treatment improved the survival rate, the oxygenation index and the histologic changes. NaB decreased the W/D ratio, total protein concentration, and the levels of proinflammatory cytokines, as well as SP-D, DAO and LPS, while increased the levels of anti-inflammatory cytokines and amphiregulin. The intercellular junction protein expression were improved by NaB. Furthermore, the CD4+/CD8+ T-cell ratio and the proportion of CD4+Foxp3+ regulatory T cells (Tregs) were increased by NaB. Our data suggested that NaB gavage effectively improved the survival rate and mitigated lung injury in CLP mice. The possible mechanism was that NaB augmented CD4+Foxp3+ Tregs and enhanced the barrier function of the gut and the lung.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/complicações , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Ácido Butírico/metabolismo , Anfirregulina/metabolismo , Linfócitos T Reguladores/metabolismo , Lipopolissacarídeos/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Pulmão/patologia , Citocinas/metabolismo , Fatores de Transcrição/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Fatores de Transcrição Forkhead/metabolismo
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1006352

RESUMO

@#The plasma matrix is a kind of autologous blood conduct. It has been widely used in maxillofacial tissue regeneration, skin cosmetology and some other fields. Recently, to preserve the dental pulp as well as the teeth, pulp regeneration therapy and apical surgery have become increasingly important as well as the applications of bioactive materials. As a kind of autologous bioactive material, the plasma matrix has some natural advantages as it is easy to obtain and malleable. The plasma matrix can be used in the following cases: ①pulp revascularization of young permanent teeth with open apical foramina that cannot stimulate apical bleeding; ② apical barrier surgery with bone defects and large area perforation repair with bone defects or root sidewall repair surgery; ③ apical surgeries of teeth with large area of apical lesions, with or without periodontal diseases. The plasma matrix is a product derived from our blood, and there are no obvious contraindications for its use. Several systematic reviews have shown that the plasma matrix can effectively promote the regenerative repair of dental pulp in patients with periapical diseases. However, the applications of plasma matrix are different because its characteristics are affected by different preparation methods. In addition, there is still a lack of long-term clinical researches on the plasma matrix, and the histological evidences are difficult to obtain, so a large number of in vitro and in vivo experimental studies are still needed. This article will describe the applications of different kinds of plasma matrix for dental pulp regeneration and bone tissue regeneration in apical surgeries to provide references for clinicians in indication selection and prognosis evaluation.

8.
Pest Manag Sci ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031205

RESUMO

BACKGROUND: Kiwifruit soft rot is mainly caused by Botryosphaeria dothidea, representing a considerable threat to kiwifruit industry. This investigation assessed the inhibitory consequences and mechanisms of honokiol against B. dothidea, evaluating the inhibitory effects and underlying mechanism. RESULTS: A strain of B.dothidea (XFCT-2) was isolated from infected soft rot kiwifruit. The findings indicate that honokiol hindered the mycelial growth, conidial germination, and pathogenicity of B. dothidea in a dose-dependent manner, both in vitro and in vivo. Furthermore, ultrastructural examinations showed that honokiol impaired the integrity of B. dothidea, leading to an elevation in cell membrane permeability, engendering a multitude of intracellular substance extravasations and hampering energy metabolism. Transcriptome analysis exhibited that honokiol-regulated genes were related to membrane lipid biosynthesis, comprising ACC1, FAS2, Arp2, gk, Cesle, and Etnk1. These findings indicate that honokiol impedes B. dothidea by obstructing lipid biosynthesis within the cell membrane and compromising its integrity, halting the growth of the mycelia, which could potentially cause cellular demise. CONCLUSION: This investigation illustrates how honokiol functions as an eco-friendly approach to prevent the occurrence of soft rot in kiwifruits. © 2023 Society of Chemical Industry.

9.
BMC Plant Biol ; 23(1): 591, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008764

RESUMO

BACKGROUND: Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease worldwide. Resistance genes that respond to Psa infection urgently need to be identified for controlling this disease. Laccase is mainly involved in the synthesis of lignin in the plant cell wall and plays a prominent role in plant growth and resistance to pathogen infection. However, the role of laccase in kiwifruit has not been reported, and whether laccase is pivotal in the response to Psa infection remains unclear. RESULTS: We conducted a bioinformatics analysis to identify 55 laccase genes (AcLAC1-AcLAC55) in the kiwifruit genome. These genes were classified into five cluster groups (I-V) based on phylogenetic analysis, with cluster groups I and II having the highest number of members. Analysis of the exon-intron structure revealed that the number of exons varied from 1 to 8, with an average of 5 introns. Our evolutionary analysis indicated that fragment duplication played a key role in the expansion of kiwifruit laccase genes. Furthermore, evolutionary pressure analysis suggested that AcLAC genes were under purifying selection. We also performed a cis-acting element analysis and found that AcLAC genes contained multiple hormone (337) and stress signal (36) elements in their promoter regions. Additionally, we investigated the expression pattern of laccase genes in kiwifruit stems and leaves infected with Psa. Our findings revealed that laccase gene expression levels in the stems were higher than those in the leaves 5 days after inoculation with Psa. Notably, AcLAC2, AcLAC4, AcLAC17, AcLAC18, AcLAC26, and AcLAC42 showed significantly higher expression levels (p < 0.001) compared to the non-inoculated control (0 d), suggesting their potential role in resisting Psa infection. Moreover, our prediction indicated that 21 kiwifruit laccase genes are regulated by miRNA397, they could potentially act as negative regulators of lignin biosynthesis. CONCLUSIONS: These results are valuable for further analysis of the resistance function and molecular mechanism of laccases in kiwifruit.


Assuntos
Actinidia , Lacase , Lacase/genética , Filogenia , Lignina , Evolução Biológica , Actinidia/genética , Actinidia/microbiologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
10.
PLoS Biol ; 21(10): e3002313, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37796762

RESUMO

Mutations in mitochondrial DNA (mtDNA) contribute to a variety of serious multi-organ human diseases, which are strictly inherited from the maternal germline. However, there is currently no curative treatment. Attention has been focused on preventing the transmission of mitochondrial diseases through mitochondrial replacement (MR) therapy, but levels of mutant mtDNA can often unexpectedly undergo significant changes known as mitochondrial genetic drift. Here, we proposed a novel strategy to perform spindle-chromosomal complex transfer (SCCT) with maximal residue removal (MRR) in metaphase II (MII) oocytes, thus hopefully eliminated the transmission of mtDNA diseases. With the MRR procedure, we initially investigated the proportions of mtDNA copy numbers in isolated karyoplasts to those of individual oocytes. Spindle-chromosomal morphology and copy number variation (CNV) analysis also confirmed the safety of this method. Then, we reconstructed oocytes by MRR-SCCT, which well developed to blastocysts with minimal mtDNA residue and normal chromosomal copy numbers. Meanwhile, we optimized the manipulation order between intracytoplasmic sperm injection (ICSI) and SCC transfer and concluded that ICSI-then-transfer was conducive to avoid premature activation of reconstructed oocytes in favor of normal fertilization. Offspring of mice generated by embryos transplantation in vivo and embryonic stem cells derivation further presented evidences for competitive development competence and stable mtDNA carryover without genetic drift. Importantly, we also successfully accomplished SCCT in human MII oocytes resulting in tiny mtDNA residue and excellent embryo development through MRR manipulation. Taken together, our preclinical mouse and human models of the MRR-SCCT strategy not only demonstrated efficient residue removal but also high compatibility with normal embryo development, thus could potentially be served as a feasible clinical treatment to prevent the transmission of inherited mtDNA diseases.


Assuntos
Variações do Número de Cópias de DNA , Doenças Mitocondriais , Masculino , Humanos , Animais , Camundongos , Variações do Número de Cópias de DNA/genética , Sêmen , Mitocôndrias/genética , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Oócitos
11.
Molecules ; 28(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836764

RESUMO

In this study, the sensing mechanism of (2E,4E)-5-(4-(dimethylamino)phenyl)-1-(2-(2,4dinitrophenoxy)phenyl)penta-2,4-dien-1-one (DAPH-DNP) towards thiophenols was investigated by density functional theory (DFT) and time-dependent DFT (TD-DFT). The DNP group plays an important role in charge transfer excitation. Due to the typical donor-excited photo-induced electron transfer (d-PET) process, DAPH-DNP has fluorescence quenching behavior. After the thiolysis reaction between DAPH-DNP and thiophenol, the hydroxyl group is released, and DAPH is generated with the reaction showing strong fluorescence. The fluorescence enhancement of DAPH is not caused by an excited-state intramolecular proton transfer (ESIPT) process. The potential energy curves (PECs) show that DAPH-keto is less stable than DAPH-enol. The frontier molecular orbitals (FMOs) of DAPH show that the excitation process is accompanied by intramolecular charger transfer (ICT), and the corresponding character of DAPH was further confirmed by hole-electron and interfragment charge transfer (IFCT) analysis methods. Above all, the sensing mechanism of the turn-on type probe DAPH-DNP towards thiophenol is based on the PET mechanism.

12.
Medicine (Baltimore) ; 102(41): e34865, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37832071

RESUMO

The objective is to develop and validate a combined model for noninvasive preoperative differentiating tumor deposits (TDs) from lymph node metastasis (LNM) in patients with rectal cancer (RC). A total of 204 patients were enrolled and randomly divided into 2 sets (training and validation set) at a ratio of 8:2. Radiomics features of tumor and peritumor fat were extracted by using Pyradiomics software from the axial T2-weighted imaging of MRI. Rad-score based on extracted Radiomics features were calculated by combination of feature selection and the machine learning method. Factors (Rad-score, laboratory test factor, clinical factor, traditional characters of tumor on MRI) with statistical significance were integrated to build a combined model. The combined model was visualized by a nomogram, and its distinguish ability, diagnostic accuracy, and clinical utility were evaluated by the receiver operating characteristic curve (ROC) analysis, calibration curve, and clinical decision curve, respectively. Carbohydrate antigen (CA) 19-9, MRI reported node stage (MRI-N stage), tumor volume (cm3), and Rad-score were all included in the combined model (odds ratio = 3.881 for Rad-score, 2.859 for CA19-9, 0.411 for MRI-N stage, and 1.055 for tumor volume). The distinguish ability of the combined model in the training and validation cohorts was area under the summary receiver operating characteristic curve (AUC) = 0.863, 95% confidence interval (CI): 0.8-0.911 and 0.815, 95% CI: 0.663-0.919, respectively. And the combined model outperformed the clinical model in both training and validation cohorts (AUC = 0.863 vs 0.749, 0.815 vs 0.627, P = .0022, .0302), outperformed the Rad-score model only in training cohorts (AUC = 0.863 vs 0.819, P = .0283). The combined model had highest net benefit and showed good diagnostic accuracy. The combined model incorporating Rad-score and clinical factors could provide a preoperative differentiation of TD from LNM and guide clinicians in making individualized treatment strategy for patients with RC.


Assuntos
Nomogramas , Neoplasias Retais , Humanos , Antígeno CA-19-9 , Extensão Extranodal , Metástase Linfática/diagnóstico , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/cirurgia , Estudos Retrospectivos
13.
ACS Omega ; 8(30): 27179-27189, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546673

RESUMO

The direct oxidation of low-concentration methane to value-added chemicals can not only reduce carbon emission but also provide an alternative production route for fossil fuels. Herein, we proposed a novel catalyst for the direct oxidation of low-concentration methane to methanol via the impregnation method, which selected copper and zinc as co-modifiers to modify the MOR catalyst. The highest methanol yield of 71.35 µmol·gcat-1·h-1 was obtained over a bimetallic Cu0.5Zn0.35-MOR catalyst. The catalyst retained good activity after three cycles of testing experiments, indicating good recyclability. Based on the results of performance tests and characterization studies, it was confirmed that Cu species bound to the zeolite framework were the main active sites for methane oxidation. The introduction of Zn decreased the generation of the octahedrally coordinated extra-framework aluminum, which promoted the dispersion of Cu within the zeolite framework. In other words, more tetrahedrally coordinated FAl-stabilized Cu species were presented in our CuZn-MOR catalyst system in comparison to the monometallic Cu-MOR catalyst. Benefiting from the aforementioned modification, the agglomerative sintering of the metal during the reaction was effectively prevented. This work may provide a feasible guide for the future optimization of Cu-based catalysts designed for the selective oxidation of methane.

14.
J Agric Food Chem ; 71(36): 13566-13576, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651104

RESUMO

Kiwifruit canker is caused by Pseudomonas syringae pv. actinidiae and is one of the most destructive diseases of kiwifruit worldwide. Sulfur can improve the deposit of lignin in kiwifruit stems and induce disease resistance, but the action mechanism at the molecular level remains unclear. This omics-based study revealed that sulfur-induced S lignin synthesis contributes to disease resistance. Histological staining verified sulfur-enhanced total lignin deposition in kiwifruit stems. High-performance liquid chromatography and confocal Raman microscopy showed that sulfur-activated S lignin was mainly deposited in the cell corner. Metabolome and transcriptome analysis revealed that the levels of phenylpropanoid pathway S lignin precursors sinapic acid and sinapyl alcohol were significantly increased and 16 laccase genes were upregulated. Sulfur-induced resistance defense promoted elevated laccase activity by activating the laccase genes, participating in sinapic acid and sinapyl alcohol substance synthesis, and ultimately polymerizing S lignin at cell corner against kiwifruit canker disease.


Assuntos
Actinidia , Lacase , Lacase/genética , Lignina , Resistência à Doença , Metaboloma , Perfilação da Expressão Gênica , Actinidia/genética , Enxofre
15.
Biomolecules ; 13(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37509098

RESUMO

Hydrogels have been widely applied to the fabrication of tissue engineering scaffolds via three-dimensional (3D) bioprinting because of their extracellular matrix-like properties, capacity for living cell encapsulation, and shapeable customization depending on the defect shape. However, the current hydrogel scaffolds show limited regeneration activity, especially in the application of periodontal tissue regeneration. In this study, we attempted to develop a novel multi-component hydrogel that possesses good biological activity, can wrap living cells for 3D bioprinting and can regenerate periodontal soft and hard tissue. The multi-component hydrogel consisted of gelatin methacryloyl (GelMA), sodium alginate (SA) and bioactive glass microsphere (BGM), which was first processed into hydrogel scaffolds by cell-free 3D printing to evaluate its printability and in vitro biological performances. The cell-free 3D-printed scaffolds showed uniform porous structures and good swelling capability. The BGM-loaded scaffold exhibited good biocompatibility, enhanced osteogenic differentiation, apatite formation abilities and desired mechanical strength. The composite hydrogel was further applied as a bio-ink to load with mouse bone marrow mesenchymal stem cells (mBMSCs) and growth factors (BMP2 and PDGF) for the fabrication of a scaffold for periodontal tissue regeneration. The cell wrapped in the hydrogel still maintained good cellular vitality after 3D bioprinting and showed enhanced osteogenic differentiation and soft tissue repair capabilities in BMP2- and PDGF-loaded scaffolds. It was noted that after transplantation of the cell- and growth factor-laden scaffolds in Beagle dog periodontal defects, significant regeneration of gingival tissue, periodontal ligament, and alveolar bone was detected. Importantly, a reconstructed periodontal structure was established in the treatment group eight weeks post-transplantation of the scaffolds containing the cell and growth factors. In conclusion, we developed a bioactive composite bio-ink for the fabrication of scaffolds applicable for the reconstruction and regeneration of periodontal tissue defects.


Assuntos
Bioimpressão , Osteogênese , Animais , Camundongos , Cães , Bioimpressão/métodos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Hidrogéis/química
16.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446563

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a progressive urological disease occurring in middle-aged and elderly men, which can be characterized by the non-malignant overgrowth of stromal and epithelial cells in the transition zone of the prostate. Previous studies have demonstrated that lycopene can inhibit proliferation, while curcumin can strongly inhibit inflammation. This study aims to determine the inhibitory effect of the combination of lycopene and curcumin on BPH. METHOD: To induce BPH models in vitro and in vivo, the BPH-1 cell line and Sprague Dawley (SD) rats were used, respectively. Rats were divided into six groups and treated daily with a vehicle, lycopene (12.5 mg/kg), curcumin (2.4 mg/kg), a combination of lycopene and curcumin (12.5 mg/kg + 2.4 mg/kg) or finasteride (5 mg/kg). Histologic sections were examined via hematoxylin and eosin (H&E) staining and immunohistochemistry. Hormone and inflammatory indicators were detected via ELISA. Network pharmacology analysis was used to fully predict the therapeutic mechanism of the combination of lycopene and curcumin on BPH. RESULTS: Combination treatment significantly attenuated prostate hyperplasia, alleviated BPH pathological features and decreased the expression of Ki-67 in rats. The upregulation of the expression of testosterone, dihydrotestosterone (DHT), 5α-reductase, estradiol (E2) and prostate-specific antigen (PSA) in BPH rats was significantly blocked by the combination treatment. The expression levels of inflammatory factors including interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α were strongly inhibited by the combination treatment. From the network pharmacology analysis, it was found that the main targets for inhibiting BPH are AKT1, TNF, EGFR, STAT3 and PTGS2, which are enriched in pathways in cancer. CONCLUSION: The lycopene and curcumin combination is a potential and more effective agent to prevent or treat BPH.


Assuntos
Curcumina , Hiperplasia Prostática , Propionato de Testosterona , Masculino , Humanos , Ratos , Animais , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Propionato de Testosterona/efeitos adversos , Ratos Sprague-Dawley , Licopeno/farmacologia , Licopeno/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Propionatos/farmacologia , Extratos Vegetais/farmacologia , Testosterona/metabolismo , Inflamação/tratamento farmacológico , Proliferação de Células
17.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446606

RESUMO

As a group of naturally occurring peptides in various foods, γ-glutamyl peptides possess a unique Kokumi taste and health benefits. However, few studies have focused on the functionality of γ-glutamyl peptides. In this study, the γ-[glutamyl] (n=1, 2, 3)-tryptophan peptides were synthesized from a solution of glutamine (Gln) and tryptophan (Trp) employing L-glutaminase from Bacillus amyloliquefaciens. Four different γ-glutamyl peptides were identified from the reaction mixture by UPLC-Q-TOF-MS/MS. Under optimal conditions of pH 10, 37 °C, 3 h, 0.1 mol/L Gln: 0.1 mol/L Trp = 1:3, and glutaminase at 0.1% (m/v), the yields of γ-l-glutamyl-l-tryptophan (γ-EW), γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEW) and γ-l-glutamyl-γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEEW) were 51.02%, 26.12% and 1.91% respectively. The antioxidant properties of the reaction mixture and the two peptides (γ-EW, γ-EEW) identified from the reaction media were further compared. Results showed that γ-EW exhibited the highest DPPH•, ABTS•+ and O2•--scavenging activity (EC50 = 0.2999 mg/mL, 67.6597 µg/mL and 5.99 mg/mL, respectively) and reducing power (EC50 = 4.61 mg/mL), while γ-EEW demonstrated the highest iron-chelating activity (76.22%). Thus, the synthesized mixture may be used as a potential source of antioxidant peptides for food and nutraceutical applications.


Assuntos
Bacillus amyloliquefaciens , Antioxidantes/farmacologia , Triptofano , Glutaminase , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Glutamina
18.
Food Funct ; 14(14): 6678-6689, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37403576

RESUMO

The intestine and its flora have established a strong link with each other and co-evolved to become a micro-ecological system that plays an important role in human health. Plant polyphenols have attracted a great deal of attention as potential interventions to regulate the intestinal microecology. In this study, we investigated the effects of apple peel polyphenol (APP) on the intestinal ecology by establishing an intestinal ecological dysregulation model using lincomycin hydrochloride-induced Balb/c mice. The results showed that APP enhanced the mechanical barrier function of mice by upregulating the expression of the tight junction proteins at the transcriptional and translational levels. In terms of the immune barrier, APP downregulated the protein and mRNA expression of TLR4 and NF-κB. As for the biological barrier, APP promoted the growth of beneficial bacteria as well as increasing the diversity of intestinal flora. In addition, APP treatment significantly increased the contents of short-chain fatty acids in mice. In conclusion, APP can alleviate intestinal inflammation and epithelial damage as well as inducing potentially beneficial changes in the intestinal microbiota, which helps to reveal the potential mechanisms of host-microbial interactions and polyphenol regulation of intestinal ecology.


Assuntos
Microbioma Gastrointestinal , Malus , Humanos , Camundongos , Animais , NF-kappa B/genética , Antibacterianos/farmacologia , Malus/metabolismo , Receptor 4 Toll-Like/genética , Proteínas de Junções Íntimas/metabolismo , Polifenóis/farmacologia , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Disbiose/genética
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123125, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478759

RESUMO

As one of the members of reactive sulfur species, hydrogen polysulfide (H2Sn, n > 1) plays an important role in enzyme activity and nervous system regulations, and the sensing mechanism study is of great significance for the design of novel efficient probes. Herein, we investigated the sensing mechanism of an efficient triphenylamine-benzofuran-based probe (TBF-SS) towards H2Sn using DFT method. The inherent fluorescence quenching of the probe is dominated by the twisted intramolecular charge transfer (TICT) as revealed by the torsional potential curve calculations. When the nitro fluorophenyl group is replaced by a hydroxyl group in the reaction with H2Sn, the TICT is eliminated and the excited state can return to the ground state in a radiative way, leading to strong fluorescence emission.

20.
J Neuroimmune Pharmacol ; 18(3): 366-382, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37318680

RESUMO

Ischemic stroke is a cerebrovascular lesion caused by local ischemia and hypoxia. Diabetes mellitus (DM) is a chronic inflammatory disease that disturbs immune homeostasis and predisposes patients to ischemic stroke. The mechanism by which DM exacerbates stroke remains unclear, although it may involve disturbances in immune homeostasis. Regulatory T cells (Tregs) play a regulatory role in many diseases, but the mechanism of Tregs in diabetes complicated by stroke remains unclear. Sodium butyrate is a short-chain fatty acid that increases Treg levels. This study examined the role of sodium butyrate in the prognosis of neurological function in diabetic stroke and the mechanism by which Tregs are amplified in the bilateral cerebral hemispheres. We evaluated the brain infarct volume, observed 48-h neuronal injury and 28-day behavioral changes, and calculated the 28-day survival rate in mice. We also measured Treg levels in peripheral blood and brain tissue, recorded changes in the blood‒brain barrier and water channel proteins and neurotrophic changes in mice, measured cytokine levels and peripheral B-cell distribution in bilateral hemispheres and peripheral blood, and examined the polarization of microglia and the distribution of peripheral T-cell subpopulations in bilateral hemispheres. Diabetes significantly exacerbated the poor prognosis and neurological deficits in mice with stroke, and sodium butyrate significantly improved infarct volume, prognosis, and neurological function and showed different mechanisms in brain tissue and peripheral blood. The potential regulatory mechanism in brain tissue involved modulating Tregs/TGF-ß/microglia to suppress neuroinflammation, while that in peripheral blood involved improving the systemic inflammatory response through Tregs/TGF-ß/T cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...